
Channel Capacity and Channel Models
In this module, we address and try to find an answer to the questions

Q1: What happens to information when transmitted over a channel?

Q2: What is the maximum rate at which information can be transmitted.

We will consider two channel models,

The Discrete Memory-less channel (in this module)

The continuous Gaussian channel (in the next module).
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Discrete Memoryless Channel (DMC)

Definition of DMC

Channel with input X (of size J) and output Y (of size K) 

which is a noisy version of X. In general, J does not 

necessarily equal K.

Discrete when both X and Y are alphabets of finite sizes.

Memoryless when present values of X affect only present 

values of Y. No dependency on past values of X.

If                        is a sequence of input symbols and                           is  
the corresponding sequence of output symbols, then   
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Model of a Discrete Channel

X Y

P(X=0) Y=0   

P(X=1) Y=1

••• •••

P(X=J-1) Y = K-1

P(Y=0|X=0)

P(Y=1|X=J-1)

P(Y=0|X=J-1)

P(Y= K-1|X=1)

P(Y= K-1|X=J-1)

P(Y= K-1|X=0)

X J 1

X 0

X J 1

X 0

P(X ,Y ) P(X )P(Y |X ) 

P(Y j) P(X )P(Y |X )

P(X ,Y )
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Channel is characterized by a set of transition probabilities.

X: Discrete

Y: Discrete
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Given the marginal pdf of X, 𝑃(𝑋 = 𝑥𝑗) ,  and the 

channel transition probabilities 𝑃(𝑦𝑘/𝑥𝑗)

The joint prob. distribution of X and Y

The marginal pdf of the output Y,
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Discrete Memoryless Channel
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Example: Discrete Memoryless Channel

X Y

P(X=0)=0.5 Y=0   

P(X=1)=0.5 Y=1

Y = 2

Consider a DMC with two equally probable input symbols (0, 1) and three 

output symbols (0, 1, 2). The transition probabilities are as shown in the 

figure. Find the probability distribution of the channel output.

0.15

0.8
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0.05

0.15

0.8

P(Y 0) 0.5*0.8 0.5*0.05 0.425   

P(Y 1) 0.5*0.15 0.5*0.15 0.15   

P(Y 2) 0.5*0.05 0.5*0.8 0.425   
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Probabilities sum to 1
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Binary Symmetric Channel (BSC )

For the binary symmetric channel, P(y0/x1)=P(y1/x0) = p.

1-p

1-p

p

p

00 x

11 x 11 y

00 y

(Y 0) (X 0)(1 p) (X 1)p

(Y 1) (X 0)p (X 1)(1 p) 

P P P

P P P

     

     

𝑷𝒃
∗ = 𝑸

𝟎
𝝉
(𝒔𝟏 𝒕 − 𝒔𝟐 𝒕 )𝟐𝒅𝒕

𝟐𝑵𝟎
= 𝒑
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Example: Binary Symmetric Channel (BSC )

1-p

1-p

p

p

11 x 11 y

00 y

(Y 0) (X 0)(1 p) (X 1)p

(Y 1) (X 0)p (X 1)(1 p) 

P P P

P P P

     

     

𝑳𝒆𝒕 𝑷 𝑿 = 𝟎 = 𝟎. 𝟑 𝒂𝒏𝒅 𝒑 = 𝟎. 𝟏. 𝑭𝒊𝒏𝒅
• 𝒂.𝑷 𝒀 = 𝟎
• b. P(Y= 0, 1 / X=0, 0)

• 𝒂.𝑷 𝒀 = 𝟎 = 𝟎. 𝟑 ∗ 𝟎. 𝟗 + 𝟎. 𝟕 ∗ 𝟎. 𝟏 = 𝟎. 𝟑𝟒
• b. 𝑷 𝒀 = 𝟎, 𝟏| 𝑿 = 𝟎, 𝟎 = 𝑷 𝒀 = 𝟎| 𝑿 = 𝟎 𝑷 𝒀 = 𝟏| 𝑿 = 𝟎 =

𝟏 − 𝒑 𝒑 = 𝟎. 𝟗 ∗ 𝟎. 𝟏 = 𝟎. 𝟎𝟗 (using the memoryless property)

00 x



Joint Entropy and Mutual Information

Review. Consider a source S with the following probability 
distribution: 

1

The entropy H of S is defined as:

H 𝑺 = σ𝒊=𝟏
𝑴 −𝒑𝒊 𝐥𝐨𝐠𝟐 𝒑𝒊 (𝐛𝐢𝐭/𝐬𝐲𝐦𝐛𝐨𝐥)

The entropy H can be interpreted as

The average amount of information in the source

It is a measure of uncertainty in the source

The minimum number of bits/symbol that is needed to 
represent the source (the source coding theorem)

s1
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sM
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The Joint Entropy

• Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝐽} be the input to a channel and let 

Y = {𝑦1, 𝑦2, … , 𝑦𝐾} be the channel output . 

• Let P(𝑋 = 𝑥𝑗 , 𝑌 = 𝑦𝑘} be the joint pdf of X and Y.

• The joint occurrence of (𝑥𝑗 , 𝑦𝑘) can be considered as a 

source in a two-dimensional space.

• The joint entropy of X and Y, represents the uncertainty 
in the joint event (X,Y) and is defined as:
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Joint and the Conditional Entropies
An alternative representation of the joint entropy can be found as:

It can also be shown also that:
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( , ) ( ) ( | )H X Y H Y H X Y 

The uncertainty in the joint event 
(X,Y) is the sum of the uncertainty 
in X plus the remaining uncertainty 
in Y after X is known.

When X and Y are 
independent (prove)

( , ) ( ) ( )H X Y H Y H X 

The uncertainty in the joint event 
(X,Y) is the sum of the uncertainties 
in X  and Y when they are 
independent

( , ) (X) (Y | X)H X Y H H 



Joint and Conditional Entropies: Example

4

Consider two random variables X and Y with the joint pdf as shown in 
the table below. Find H(X, Y), H(X), H(Y), H(Y/X) and H(X/Y).

P(Y = y) 1/2 1/4 1/8 1/8

P(X=x) Y
X

0 1 2 3

1/4 0 1/8 1/16 1/32 1/32

1/4 1 1/16 1/8 1/32 1/32

1/4 2 1/16 1/16 1/16 1/16

1/4 3 1/4 0 0 0

𝐇 𝐗, 𝐘 = 𝟐 ∗
𝟏

𝟖
𝒍𝒐𝒈𝟐 𝟖 + 𝟔 ∗ (

𝟏

𝟏𝟔
)𝒍𝒐𝒈𝟐 𝟏𝟔 +(1/4) 𝒍𝒐𝒈𝟐 𝟒 +4*(1/32) 

𝒍𝒐𝒈𝟐 𝟑𝟐 =
𝟑

𝟒
+

𝟑

𝟐
+

𝟏

𝟐
+

𝟓

𝟖
= 𝟑. 𝟑𝟕𝟓𝒃𝒊𝒕𝒔

𝐇 𝐗/𝐘 = 𝐇 𝐗, 𝐘 − 𝑯 𝒀 = 𝟑. 𝟑𝟕𝟓 − 𝟏. 𝟕𝟓 = 𝟏. 𝟔𝟐𝟓
𝐇 𝐘/𝑿 = 𝐇 𝐗, 𝐘 − 𝑯 𝑿 = 𝟑. 𝟑𝟕𝟓 − 𝟐 = 𝟏. 𝟑𝟕𝟓

𝐇 𝐗 = 𝟒 ∗
𝟏

𝟒
𝒍𝒐𝒈𝟐 𝟒 = 𝟐 𝒃𝒊𝒕𝒔

𝐇 𝒀 =
𝟏

𝟐
𝒍𝒐𝒈𝟐 𝟐 +

𝟏

𝟒
𝒍𝒐𝒈𝟐 𝟒 + 𝟐 ∗

𝟏

𝟖
𝒍𝒐𝒈𝟐 𝟖 = 𝟏. 𝟕𝟓 𝒃𝒊𝒕𝒔

Note that

𝐇 𝐗, 𝐘 > 𝐇 𝐗
𝐇 𝐗, 𝐘 > 𝐇 𝒀
𝐇 𝐗, 𝐘 < 𝐇 𝐗 +𝑯 𝒀
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H 𝑺 = σ𝒊=𝟏
𝑴 −𝒑𝒊 𝐥𝐨𝐠𝟐 𝒑𝒊



Relations among Joint and Conditional Entropies

Lemma: H(X,Y) ≤ H(X) + H(Y), (Proof will be given at the end of 
the video)

If P(X,Y) = P(X)P(Y), i.e., when X and Y are independent, then

H(X,Y) = H(X) + H(Y) (the joint entropy is the sum of the 
individual entropies).

H(X|Y) = H(X) and H(Y|X) = H(Y) 

5

H(X)

H(Y|X)

H(Y)

H(X|Y)

H(X, Y) Observe that:
H(X|Y) < H(X)  and

H(Y|X) < H(Y). 

Equality holds when X and Y are 

independent 



Mutual Information
Given two r.v. , X and Y with marginal distributions P(X) and 
P(Y), the mutual information between X and Y is the 
relative entropy between the joint distribution P(X,Y) and 
the product distribution P(X)P(Y). It is a measure of the 
amount of information one r.v. contains about another r.v.
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H(X)

H(Y|X)

H(Y)

H(X|Y)

H(X, Y)

I(X; Y) = I(Y; X)

• H(X):  Uncertainty about X
• H(X/Y):Remaining uncertainty 

about X after Y is being observed 
• The difference is the amount of 

information conveyed by Y (the 
reduction in uncertainty)



Mutual Information

• Mutual information is the amount of uncertainty about 
the channel input X resolved on observing the channel 
output Y.

• For a good channel, one would expect 𝐼 𝑋; 𝑌 to be large, 
i.e., on observing Y, we are able to resolve X with a high 
degree of reliability.

7
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Joint and Conditional Entropies: Example

8

Consider two random variables X and Y with the joint pdf as shown in 
the table below. Find I(X;Y)

P(Y = y) 1/2 1/4 1/8 1/8

P(X=x) Y
X

0 1 2 3

1/4 0 1/8 1/16 1/32 1/32

1/4 1 1/16 1/8 1/32 1/32

1/4 2 1/16 1/16 1/16 1/16

1/4 3 1/4 0 0 0

For this example, we obtained earlier that: 

𝐇 𝐗, 𝐘 = 𝟑. 𝟑𝟕𝟓𝒃𝒊𝒕𝒔, 𝐇 𝒀 = 𝟏. 𝟕𝟓 𝒃𝒊𝒕 𝐇 𝐗 = 𝟐 𝒃𝒊𝒕𝒔

Note that 𝑰 𝑿; 𝒀 = 𝑯 𝑿 −𝑯 𝑿 𝒀
But, 𝐇 𝑿 𝒀 = 𝑯 𝑿, 𝒀 − 𝑯 𝒀 , then 

𝑰 𝑿; 𝒀 = 𝑯 𝑿 +𝑯 𝒀 −𝑯(𝑿, 𝒀),
𝑰 𝑿; 𝒀 = 𝟐 + 𝟏. 𝟕𝟓 − 𝟑. 𝟑𝟕𝟓 = 𝟎. 𝟑𝟕𝟓
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Entropy: A Proof That H(X)  H(X|Y)

,
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Mutual Information

Given two r.v. , X and Y with marginal distributions 
P(X) and P(Y), the mutual information between 
X and Y is the relative entropy between the joint 
distribution P(X,Y) and the product distribution 
P(X)P(Y). It is a measure of the amount of 
information one r.v. conveys about another r.v.

1

2
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  H(X)

H(Y|X)

H(Y)

H(X|Y)

H(X, Y)

I(X; Y) = I(Y; X)
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Mutual Information

• Mutual information is the amount of uncertainty about the 
channel input X resolved upon observing the channel output Y.

• For a reliable channel, one would like to maximize 𝐼 𝑋; 𝑌 on 
observing Y.

2

H(X/Y): 
Remaining uncertainty 
about X after 
observing Y

H(X): 
uncertainty about X

I(X;Y)=H(X) – H(X/Y)

Need to 
maximize 𝑰 𝑿; 𝒀



3

Channel Capacity
For a DMC with input X, output Y, the mutual information between the 

channel input X and its output Y is

Note that:  I(X;Y) depends on

a. Input probability distribution 𝒑(𝒙𝒋)

b. Transition probabilities 𝒑(𝒚𝒌|𝒙𝒋). These probabilities depend on the 

amount of noise present in the channel (usually, not under the 

control of the user)

• Hence, to maximize the mutual information, one would carry the 

maximization over the input probability distribution.

• The channel capacity is defined as

𝑪 = 𝒎𝒂𝒙𝒑 𝑿 𝑰(𝑿; 𝒀) bits/symbol

• Maximization over all input probability distributions. 

• C: Channel Capacity which denotes the maximum rate at which 

information can be transmitted reliably over the channel.

1 1 1 1

2 2
0 0 0 0

( | ) ( | )
( ; ) ( , ) log [ ] ( )p( | ) log [ ]

( ) ( )

J K J K
k j k j

j k j k j
j k j k

k k

p y x p y x
I X Y p x y p x y x

p y p y

   

   

  



Example: Capacity of the binary symmetric channel
Find the capacity of the BSC with cross-over probability p

To find the capacity, assume P(1)=u,  P(0)=1-u. Need to find u that 
maximizes I(X; Y). The capacity is the maximum of I(X; Y).

( 0) (1 )(1 )

( 1) (1 ) (1 )

P Y u p up

P Y u p u p

    

    

1 1

2

0 0

( | )
( ; ) ( ) ( | ) log [

( )

1
( ; ) (1 )(1 )log

(1 )(1 )

  (1 ) log
(1 ) (1 )

  log
(1 )(1 )

1
  ( )(1 )log

(1 ) (1 )

k j

j k j

j k k

p y x
I X Y p x P y x

p y

p
I X Y u p

p u pu

p
u p

p u p u

p
up

p u pu

p
u p

p u p u

 




  

  

 
  


  


 

  



u

1-u



Example: Capacity of the binary symmetric channel

To obtain the Channel Capacity  (this is very tedious)

differentiate I(X; Y) w.r.t. u. 

Set the derivative to zero . 

Solve for u. The maximum is attained when u=1/2, i.e., for 
equally probable input symbols.

Substitute u=1/2 into I(X;Y). The result is the channel capacity

0( ) 0.5

2 21 log (1 )log (1 ) 1 (

max  ( ; ) ( ; ) |

)

p xC I X Y I

C p p p p

X

h p

Y 

      

 



where h(.) is the binary entropy function introduced earlier. 

2 2h(x) log (1 )log (1 )x x x x    



Example: Capacity of the binary symmetric channel

Channel Capacity

2 21 log (1 )log (1 )

1 ( )

C p p p p

C h p

    

 

Remarks:
1. 0 ≤ C ≤1 
2. C ≤ H(X); the source entropy
3. C is max when channel makes no errors, p=0 (noiseless channel).
1. When p=1 bits are inverted but information is perfect if invert 

them back!

4. Channel conveys no information when p=0.5 (a very noisy 
channel)

I(X;Y)=H(X) – H(X/Y)



Example: Capacity of a Noiseless Channel

The noiseless channel is  deterministic. If you know Y, 
certainly, you know X (no remaining uncertainty about X 
after observing Y).

This is a special case of the BSC when p=0.

For this channel, Y = X, and therefore, H(X/Y)=0

7

( , ) (X) (X | Y)

            (X)

I X Y H H

H

 



H(X) is maximized when P(X=1)=P(X=0)=1/2. This 
implies that the capacity of the channel is

C = 1 bit/transmission



Exercise: Capacity of the Erasure channel

The input consists of the symbols (0,1) and the output consists 
of the symbols 0, 1, and an erased condition (e)

8

( , ) ( ) ( | )

             ( ) ( )

I X Y H Y H Y X

H Y h 

 

 

( ) (1 )H( ) ( )H Y X h   

( , ) (1 ) ( )I X Y H X 

By substitution, we get

This is maximized when P(X=0)=P(X=1)=1/2. In which case, H(X) 
=1, when the symbols have equal probabilities. The capacity 
becomes

 bit/transm( i s n1 ) s ioC  

2 2h(x) log (1 )log (1 )x x x x    

1-u

u
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Shannon’s Second Theorem (noisy coding theorem)

Consider a DMS with alphabet X and entropy H(X) that produces symbols 
at a rate of one symbol every 𝑻𝒔; 𝒊, 𝒆, 𝒓𝒂𝒕𝒆 𝑹𝒔 symbols/sec . The output is 
transmitted over a DMC that has a capacity C bits/ transmission and can be 
used once every 𝑻𝒄 , 𝒊. 𝒆. 𝒓𝒂𝒕𝒆 𝑹𝒄 times per sec. Then,

there exists a coding scheme capable of 
achieving an arbitrary low probability of error .

it is not possible to transmit with 
arbitrary small error

.  if  ( ) R

.  if  ( ) R

s c

s c

a H X CR

b H X CR





One source bit (Ts) One source bit (Ts) One source bit (Ts) One source bit (Ts)

Source Rate= Rs=1/Ts symbols/sec. Each symbol carries H bits of information. 
Hence, Source information rate=HRs bits of information/ sec.

Channel rate= Rc =1/Tc transmissions/sec. Information carried/transmission is the 
channel capacity C in bits/transmission. Hence, channel conveys  RC bits/sec

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

k

n
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Example: Consider a BSC with p(𝑥0) = 0.5. Here, H(X)=1.

Solution: Since H(X)=1, the condition for reliable communication:

𝑅𝑠 ≤ 𝐶𝑅𝑐 or   
𝑅𝑠

𝑅𝑐
≤ 𝐶

Let us define the code rate as:

𝒓 =
𝑅𝑠

𝑅𝑐
=

𝑇𝑐

𝑇𝑠

for 𝒓 ≤ 𝑪 , there exists a code (with code rate less than or 

equal to C) capable of achieving an arbitrary low 

probability of error.

Channel Coding Theorem for DMC

One source bit (Ts) One source bit (Ts) One source bit (Ts) One source bit (Ts)

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

One 
channel 
bit (Tc)

k

n



Channel Coding Theorem for DMC

Suppose r<C, where C is the capacity of a DMC, then for any ε>0, 
there exists a code of rate r and length n such that the 
probability of block error decoding < ε when the code is used on 
the channel.

The theorem emphasizes the existence of a code, but does not 
specify the code itself.

Suppose that we have k independent message bits and we add 
(n-k) redundant bits derived from the k bits. The result is a 
codeword of length n.  During transmission, there will be errors 
in the n bits. But the redundant (n-k) bits will serve to reduce 
the block error probability so we can recover the k message bits 
with an arbitrarily small probability of error. Later on in the 
course, we will consider these encoding schemes.

Theorem will not be proved here.
11



1

Capacity of the AWGN Continuous Channel

(Modulated waveform channels)

Channel input: Waveform 
(Continuous RV)

Channel output: Waveform 
(Continuous RV)

(0, 1)

(0, 1)
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Continuous Sources: Differential Entropy

For a source X with a discrete alphabet, we defined entropy 
as

𝑯 𝑿 = −σ𝒙=𝟎
𝑴−𝟏𝑷𝒙𝒍𝒐𝒈𝟐 𝑷𝒙

For a source X with a continuous distribution, we define the 
differential entropy as

h 𝑿 = ∞−−
∞

𝒇𝑿 𝒙 𝒍𝒐𝒈𝟐 𝒇𝑿 𝒙 𝒅𝒙

Here, 𝑓𝑋 𝑥 is the probability density function of the 
random variable X.

Note that small h is used to denote the differential entropy.

2



Example: Differential Entropy of a Uniform pdf

Consider a source X with a uniform distribution as shown below

Let ∆= (𝑏 − 𝑎). The differential entropy is

h 𝑋 = ∞−−
∞

𝑓𝑋 𝑥 𝑙𝑜𝑔2 𝑓𝑋 𝑥 𝑑𝑥 = ∞−−
∞
(
1

∆
)𝑙𝑜𝑔2

1

∆
𝑑𝑥

h 𝑋 = −(
1

∆
)𝑙𝑜𝑔2

1

∆
∆= 𝑙𝑜𝑔2(∆)

When ∆ < 1, h 𝑋 is negative. Hence, unlike entropy, differential 
entropy can be negative.

3

a b

fX(x)

x

𝑓𝑋(𝑥) = ቊ
1/(b−a) , a ≤ x ≤ b

0 , otherwise

1/(b−a)



Differential Entropy of the Gaussian Source
Consider a source X with a Gaussian distribution as shown below

4

𝑓𝑋(𝑥) =
1

2 𝜋𝜎𝑋
2
𝑒

− 𝑥− 𝜇𝑋
2

2𝜎𝑋
2

Note that:
ln 𝑎𝑏 = ln 𝑎 + ln(𝑏)
ln 𝑎/𝑏 = ln 𝑎 − ln(𝑏)

ln 1/𝑏 = −ln(𝑏)
𝑙𝑜𝑔2 𝑢 = ln 𝑢 /ln(2)

Also, 𝑙𝑜𝑔2 𝑒 = ln 𝑒 /ln(2)

Hence      
1

ln 2
= 𝑙𝑜𝑔2 𝑒

Therefore, 𝑙𝑜𝑔2 𝑢 = 𝑙𝑜𝑔2 𝑒 ln 𝑢

ln 𝑓𝑋 𝑥 = −
1

2
ln 2𝜋𝜎2 −

1

2𝜎2
(𝑥 − 𝜇 2

𝑙𝑜𝑔2 𝑓𝑋 𝑥 = −𝑙𝑜𝑔2 𝑒 (
1

2
ln 2𝜋𝜎2 +

1

2𝜎2
(𝑥 − 𝜇 2)



Differential Entropy of the Gaussian Source

The differential entropy is

h 𝑋 = ∞−−
∞

𝑓𝑋 𝑥 𝑙𝑜𝑔2 𝑓𝑋 𝑥 𝑑𝑥

𝑙𝑜𝑔2 𝑓𝑋 𝑥 = −𝑙𝑜𝑔2𝑒{
1

2
ln 2𝜋𝜎2 +

1

2𝜎2
(𝑥 − 𝜇 2}

h 𝑋 = ∞−
∞

𝑓𝑋 𝑥 𝑙𝑜𝑔2𝑒{
1

2
ln 2𝜋𝜎2 } +

∞−
∞

𝑓𝑋 𝑥 𝑙𝑜𝑔2𝑒{
1

2𝜎2
(𝑥 − 𝜇 2}

h 𝑋 = 𝑙𝑜𝑔2𝑒{
1

2
ln 2𝜋𝜎2 } ∞−

∞
𝑓𝑋 𝑥 𝑑𝑥;   −∞

∞
𝑓𝑋 𝑥 𝑑𝑥 = 1

+𝑙𝑜𝑔2𝑒
1

2𝜎2
∞−
∞

𝑓𝑋 𝑥 (𝑥 − 𝜇 2}𝑑𝑥;    −∞
∞

𝑓𝑋 𝑥 (𝑥 − 𝜇 2}𝑑𝑥=𝜎2

h 𝑋 =
1

2
𝑙𝑜𝑔2𝑒{ln 2𝜋𝜎2 } +

1

2
𝑙𝑜𝑔2𝑒

h 𝑋 =
1

2
𝑙𝑜𝑔2 2𝜋𝜎2 +

1

2
𝑙𝑜𝑔2𝑒 ⟹ 𝐡 𝑿 =

𝟏

𝟐
𝒍𝒐𝒈𝟐 𝟐𝝅𝒆𝝈𝟐

h 𝑿 depends only on the variance. As 𝜎2 increases, h 𝑿 increases
5



6

Definitions: Entropy and Conditional Entropy
Integration replaces summation for the case of continuous distributions
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Theorem: Maximum Differential Entropy for Specified Variance

2 2

2

    Find p.d.f. for which ( ) is maximum, subject to two constraints

    )   ( ) 1   ,   )  ( ) ( )

    where  is the mean, and  is the va

Optimization Problem

riance 

:

(m

X X

h x

i f x dx ii x f x dx const 

 

 

 
    

easure of average power)

2
2 1 2

1 2

: Based on calculus of variation & use of Lagrange multiplier

     ( ) log ( ) ( ) ( ) ( )

 and  are the Lagrange multipliers. The desired form of  ( ) is

      

Solution

  

X X X X

X

I f x f x f x x f x dx

f x

  

 





      

2

2

1 ( )
           ( )  exp

22
X

x
f x





 
  

 

2
2

The corresponding maximum entropy

                  
1

( ) log (2 )
2

h x e 

Remark: For a discrete rv, a 
uniform distribution results 
in maximum entropy. For a 
continuous rv, the Gaussian 
distribution yields the 
highest  differential entropy



Capacity of the AWGN Continuous Channel
(Modulated waveform channel

Main Results from the previous video

1. For a source X with a continuous distribution, we defined the differential entropy as

h 𝑿 = ∞−−
∞

𝒇𝑿 𝒙 𝒍𝒐𝒈𝟐 𝒇𝑿 𝒙 𝒅𝒙; 𝒇𝑿 𝒙 is the pdf of X.

2. If X is a Gaussian R.V. X~𝑁(𝜇, 𝜎𝑥
2) , then its differential entropy is given by:

𝒉 𝑿 =
𝟏

𝟐
𝒍𝒐𝒈𝟐 𝟐𝝅𝒆𝝈𝒙

𝟐

1

2 2

2

    The pdf for which ( ) is maximum, subject to two constraints

    )   ( ) 1   ,   )  ( ) ( )

    where  is the mean, and  is the variance (me

3. Optimization Problem:

X X

h x

i f x dx ii x f x dx const 

 

 

 
    

2

2

asure of average power)

   is the Gaussian density function

1 ( )
                    ( )  exp

22
X

x
f x
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2

The AWGN Channel Continuous-Input Continuous-Output Channel

• Let us  consider the continuous channel with input X and output Y. Additive 
white Gaussian noise N is added to X during transmission over the channel.

• First, we consider the capacity when X, Y, N are random variables 
(representing samples from the waveforms x(t), y(t), and n(t).

• The time functions will be treated later
• The noise N is a zero-mean R.V following the Gaussian distribution 𝑁(𝜇, 𝜎𝑁

2)
• The channel input X is a zero-mean random variable with variance 𝜎𝑋

2

• The objective is to find the capacity of this channel  defined as:
• 𝑪 = 𝒎𝒂𝒙𝒇 𝒙 𝑰(𝑿; 𝒀)

[𝑿𝟏, 𝑿𝟐, …𝑿𝟐𝑾]

[𝑵𝟏, 𝑵𝟐, …𝑵𝟐𝑾]

[𝒀𝟏, 𝒀𝟐, …𝒀𝟐𝑾]



3

Mutual Information for a Continuous Channel

The channel input X and Channel output Y are related by: 
Y = X + N;  X and Y are statistically independent.

The mutual information  I X; Y = h Y − ℎ 𝑌 𝑋
For a given X, 𝑌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑥0) + 𝑁
But,  N~𝑁(0, 𝜎𝑁

2) ,    Hence,  f(𝑌|𝑋 = 𝑥0)~𝑁(𝑥0, 𝜎𝑁
2)

Earlier, we found that the differential entropy of normal distribution with 
mean𝑥0, 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎𝑁

2

ℎ 𝑌 𝑋 = 𝑥0 = ℎ 𝑁 =
1

2
𝑙𝑜𝑔 2𝜋𝑒𝜎𝑁

2 ⟹ ℎ 𝑌 𝑋 = 𝐸𝑥{
1

2
𝑙𝑜𝑔 2𝜋𝑒𝜎𝑁

2 }

Therefore, ℎ 𝑌 𝑋 =
1

2
𝑙𝑜𝑔 2𝜋𝑒𝜎𝑁

2

Differential entropy in Y/X = Differential entropy in 𝑁(0, 𝜎𝑁
2)

𝐼 𝑋; 𝑌 = ℎ 𝑌 − ℎ 𝑁 = ℎ 𝑌 −
1

2
𝑙𝑜𝑔(2𝜋𝑒𝜎𝑁

2)



4

Capacity of the Continuous Channel
Recall, Y = X + N;

Also, I(X; Y) = h(Y) – h(Y|X)

I X; Y = h Y − ℎ 𝑁 = ℎ 𝑌 −
1

2
log(2𝜋𝑒𝜎𝑁

2)

• We observe that in order to maximize I(X; Y) we need h(Y) to be maximum, 
and this happens when Y is Gaussian.

• Y = X + N; is Gaussian when both X and N are Gaussian. But N is already 
Gaussian, so X should be Gaussian. 

• Hence, let X~𝑁 0, 𝜎𝑥
2 = 𝑁(0, 𝑃𝑥)

• Since Y = X + N, then E(Y) = E(X) + E(N),

• Var(Y) = Var(X) + Var(N), 𝜎𝑌
2 = 𝜎𝑋

2 + 𝜎𝑁
2 ⟹ ℎ 𝑌 =

1

2
log 2𝜋𝑒(𝜎𝑋

2 + 𝜎𝑁
2

C = h(Y) - h(Y|X)= 
1

2
log 2𝜋𝑒(𝜎𝑋

2 + 𝜎𝑁
2 −

1

2
log 2𝜋𝑒𝜎𝑁

2

𝑪 =
𝟏

𝟐
𝐥𝐨𝐠 𝟏 +

𝝈𝑿
𝟐

𝝈𝑵
𝟐



Capacity of the Continuous Channel

• 𝑪 =
𝟏

𝟐
𝐥𝐨𝐠 𝟏 +

𝝈𝑿
𝟐

𝝈𝑵
𝟐 in bits/channel use. 

• How to find the capacity in bits/sec?

• Now let the bandwidth of the channel be W Hz. By virtue of the sampling theorem, a
band-limited signal is completely characterized by its Nyquist sampling rate of 2W 
samples/sec.

• Hence assume that we transmit 2W samples , 𝑿𝒊, of x(t), to each sample a noise 𝑵𝒊 is 
added to produce the output sample 𝒀𝒊 = 𝑿𝒊 +𝑵𝒊; 

• [𝒀𝟏, 𝒀𝟐, … 𝒀𝟐𝑾] = [𝑿𝟏, 𝑿𝟐, …𝑿𝟐𝑾] + [𝑵𝟏, 𝑵𝟐, …𝑵𝟐𝑾] ; Samples taken over one second

• The maximum mutual information between each sample 𝑿𝒊 and 𝒀𝒊 is

• 𝑪𝒊 =
𝟏

𝟐
𝐥𝐨𝐠 𝟏 +

𝝈𝑿
𝟐

𝝈𝑵
𝟐 bits/symbol.

Therefore, the maximum mutual information between the vectors

[𝑿𝟏, 𝑿𝟐, …𝑿𝟐𝑾] and       [𝒀𝟏, 𝒀𝟐, …𝒀𝟐𝑾]

𝑪 =
𝟏

𝟐
𝐥𝐨𝐠 𝟏 +

𝝈𝑿
𝟐

𝝈𝑵
𝟐 bits/symbol    X    2W symbols/sec

𝑪 = 𝑾𝐥𝐨𝐠 𝟏 +
𝝈𝑿
𝟐

𝝈𝑵
𝟐 bits/se;  This is known as the Shannon-Hartley Law. This is one of the 

fundamental results in modern communication theory.
5



Capacity of the Continuous Channel

• 𝑪 = 𝑾𝐥𝐨𝐠 𝟏 +
𝝈𝑿
𝟐

𝝈𝑵
𝟐 bits/sec

• Channel capacity increases as the channel bandwidth increases.

• Channel capacity increases as the signal power to noise ratio increases.

• For a channel with bandwidth W and noise power spectral density 𝑵𝟎/𝟐, the 
noise power 𝝈𝑵

𝟐 = 𝑾𝑵𝟎. This can be substituted into the channel capacity 
formula to obtain:

• 𝑪 = 𝑾𝐥𝐨𝐠 𝟏 +
𝝈𝑿
𝟐

𝑾𝑵𝟎
bits/sec

• The theorem relates the channel bandwidth, the signal power and the noise 
power in one formula. 

• Sets a theoretical limit on the amount of data that can transmitted reliably 
over a noisy channel with a given bandwidth.

6



Capacity of the Continuous Channel

• 𝑪 = 𝑾𝐥𝐨𝐠 𝟏 +
𝝈𝑿
𝟐

𝝈𝑵
𝟐 bits/sec

• 𝑪 = 𝑾𝐥𝐨𝐠 𝟏 +
𝝈𝑿
𝟐

𝑾𝑵𝟎
bits/sec

• The theorem sets a limit on the amount of data that can transmitted reliably 
over a noisy channel with a given bandwidth.

• By employing sophisticated channel encoding algorithms, it is possible to 
transmit data with arbitrarily small probability of error as long as the data 
rate is below the channel capacity. 

• If data is transmitted at a rate greater than C, then regardless of any 
encoding scheme employed, there will be a definite probability of error. 

7



Example 1: An Extremely Noisy Channel 

• Consider an extremely noisy channel in which the value of the signal-to-
noise ratio is almost zero. In other words, the noise is so strong that the 
signal is faint. For this channel the capacity C is calculated as

• 𝑪 = 𝑾𝐥𝐨𝐠 𝟏 +
𝝈𝑿
𝟐

𝝈𝑵
𝟐 bits/sec

• 𝑪 = 𝑾𝐥𝐨𝐠 𝟏 + 𝟎 = 0 bits/sec

• This means that the capacity of this channel is zero regardless of the
bandwidth. In other words, we cannot receive any useful data through this
noisy channel.

8



Example 2: Capacity of the Telephone Line

• Here, we calculate the theoretical highest bit rate of a regular telephone line.
A telephone line normally has a bandwidth of 3000 Hz. The signal-to-noise
ratio is usually 35dB (3162)

• For this channel, the capacity is calculated as

• 𝑪 = 𝑾𝐥𝐨𝐠 𝟏 +
𝝈𝑿
𝟐

𝝈𝑵
𝟐 bits/sec

• 𝑪 = 𝟑𝟎𝟎𝟎𝐥𝐨𝐠 𝟏 + 𝟑𝟏𝟔𝟐 = 34,860 bits/sec

• This means that the highest bit rate for a telephone line is 34,860 bps.

• If we want to send data faster than this rate, we can either increase the
bandwidth of the line or improve the signal-to-noise ratio.

9
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